Article (electronic)
A multi-scale urban integrated assessment framework for climate change studies: A flooding application (2019)
in: Computers, Environment and Urban Systems, Volume 75, p. 229-243
1
in: Computers, Environment and Urban Systems, Volume 75, p. 229-243
1
in: Journal of transport and land use: JTLU, Volume 11, Issue 1
ISSN: 1938-7849
The adoption of the Paris Agreement has committed the world to limiting anthropogenic climate change to 2°C above preindustrial levels, adapting to climate risks, and fostering climate resilience. Given the high proportion of global emissions released by cities and the concentration of people living in urban areas, this will require an unprecedented reduction in greenhouse gas emissions and transformation of the built environment on a yet unparalleled timescale. This poses substantial challenges for urban land-use and transport planning and for the use of land-use transport models (LUTM), which have historically been developed to test incremental changes rather than the rapid transformations implied by the Paris Agreement.
This paper sets out the need for a new generation of tools to support the planning of a transition toward a low-carbon and resilient future, arguing that land-use and transport modeling tools are crucial to support this process. Recent developments in urban integrated assessment that link models of land-use and transport with other environmental models of greenhouse gas emissions and climate hazards show promise as platforms to assess the potential of urban policies in achieving the goals set out in the Paris Agreement.
The paper concludes by defining challenges for the LUTM community if it is to achieve these goals. Crucial will be the adoption of new modeling approaches to better represent rapid social and technological change and to concurrently assess the resilience and sustainability implications of different land-use and transport policies. Simple models to explore multiple scenarios of change must be integrated with more sophisticated models for detailed design. Collaborative approaches will be necessary to allow multiple stakeholders to use these tools to explore urban futures and design radical urban transitions across multiple and interdependent urban sectors.
2
International audience ; The Paris Agreement aims to limit global mean temperature rise this century well below 2 degrees Celsius above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial proportions of greenhouse gas emissions. This paper reports the state of planning for climate change by collecting and analysing local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and analysis framework was developed that classifies local climate plans in terms of their spatial (alignment with local, national and international policy) and sectoral integration (alignment into existing local policy documents). We document local climate plans that we call type A1: non-compulsory by national law and not developed as part of international climate networks; A2: compulsory by national law and not developed as part of international networks; A3: plans developed as part of international networks. This most comprehensive analysis to date reveals that there is large diversity in the availability of local climate plans with most being available in Central and Northern European cities. Approximately 66% of EU cities have an A1, A2, or A3 mitigation plan, 26% an adaptation plan, 17% joint adaptation and mitigation plans, and about 30% lack any form of local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but mitigation does not always precede adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 70% of the cities above 1 million inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1 or A2). Countries with national climate legislation (A2), such as Denmark, France, Slovakia and the United Kingdom, are found to have nearly twice as many urban mitigation plans, and five times more likely to ...
3
BASE
International audience ; The Paris Agreement aims to limit global mean temperature rise this century well below 2 degrees Celsius above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial proportions of greenhouse gas emissions. This paper reports the state of planning for climate change by collecting and analysing local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and analysis framework was developed that classifies local climate plans in terms of their spatial (alignment with local, national and international policy) and sectoral integration (alignment into existing local policy documents). We document local climate plans that we call type A1: non-compulsory by national law and not developed as part of international climate networks; A2: compulsory by national law and not developed as part of international networks; A3: plans developed as part of international networks. This most comprehensive analysis to date reveals that there is large diversity in the availability of local climate plans with most being available in Central and Northern European cities. Approximately 66% of EU cities have an A1, A2, or A3 mitigation plan, 26% an adaptation plan, 17% joint adaptation and mitigation plans, and about 30% lack any form of local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but mitigation does not always precede adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 70% of the cities above 1 million inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1 or A2). Countries with national climate legislation (A2), such as Denmark, France, Slovakia and the United Kingdom, are found to have nearly twice as many urban mitigation plans, and five times more likely to produce urban adaptation plans, than countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in countries where local climate plans are compulsory, especially in France and the UK. Finally, local climate plans of international climate networks (A3) are mostly found in the many countries where autonomous, i.e. A1 plans are less common. The findings reported here are of international importance as they will inform and support decision-making and thinking of stakeholders with similar experiences or developments at all levels and sectors in other regions around the world.
4
BASE
The Paris Agreement aims to limit global mean temperature rise this century to well below 2 degrees C above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial greenhouse gas emissions. This paper reports the state of local planning for climate change by collecting and analysing information about local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and framework for analysis was developed that classifies local climate plans in terms of their alignment with spatial (local, national and international) and other climate related policies. Out of eight types of local climate plans identified in total we document three types of stand-alone local climate plans classified as type Al (autonomously produced plans), A2 (plans produced to comply with national regulations) or A3 (plans developed for international climate networks). There is wide variation among countries in the prevalence of local climate plans, with generally more plans developed by central and northern European cities. Approximately 66% of EU cities have a type Al, A2, or A3 mitigation plan, 26% an adaptation plan, and 17% a joint adaptation and mitigation plan, while about 33% lack any form of stand-alone local climate plan (i.e. what we classify as Al, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but planning for mitigation does not always precede planning for adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 80% of the cities with above 500,000 inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (Al). Cities in four countries with national climate legislation (A2), i.e. Denmark, France, Slovakia and the United Kingdom, are nearly twice as likely to produce local mitigation plans, and five times more likely to produce local adaptation plans, compared to cities in countries without such legislation. Al and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland: while Al and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in two countries where local climate plans are compulsory, i.e. France and the UK. Finally, local climate plans produced for international climate networks (A3) are mostly found in the many countries where autonomous (type Al) plans are less common. This is the most comprehensive analysis of local climate planning to date. The findings are of international importance as they will inform and support decision making towards climate planning and policy development at national, EU and global level being based on the most comprehensive and up-to-date knowledge of local climate planning available to date.
5
BASE
The Paris Agreement aims to limit global mean temperature rise this century to well below 2 °C above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial greenhouse gas emissions. This paper reports the state of local planning for climate change by collecting and analysing information about local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and framework for analysis was developed that classifies local climate plans in terms of their alignment with spatial (local, national and international) and other climate related policies. Out of eight types of local climate plans identified in total we document three types of stand-alone local climate plans classified as type A1 (autonomously produced plans), A2 (plans produced to comply with national regulations) or A3 (plans developed for international climate networks). There is wide variation among countries in the prevalence of local climate plans, with generally more plans developed by central and northern European cities. Approximately 66% of EU cities have a type A1, A2, or A3 mitigation plan, 26% an adaptation plan, and 17% a joint adaptation and mitigation plan, while about 33% lack any form of stand-alone local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but planning for mitigation does not always precede planning for adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 80% of the cities with above 500,000 inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1). Cities in four countries with national climate legislation (A2), i.e. Denmark, France, Slovakia and the United Kingdom, are nearly twice as likely to produce local mitigation plans, and five times more likely to produce local adaptation plans, compared to cities in countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in two countries where local climate plans are compulsory, i.e. France and the UK. Finally, local climate plans produced for international climate networks (A3) are mostly found in the many countries where autonomous (type A1) plans are less common. This is the most comprehensive analysis of local climate planning to date. The findings are of international importance as they will inform and support decision-making towards climate planning and policy development at national, EU and global level being based on the most comprehensive and up-to-date knowledge of local climate planning available to date. ; EU COST Action TU0902 that made the initial work possible and the positive engagement and interaction of the members of this group which led to this work. MO acknowledges funding from the Spanish Government (Grant no. FPDI-2013-16631). EKL was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415. OH and RD were funded by the EC project RAMSES Reconciling Adaptation, Mitigation and Sustainable Development for Cities (contract Ref 308497) and the EPSRC project LC Transforms: Low Carbon Transitions of Fleet Operations in Metropolitan Sites Project (EP/N010612/1).
6
BASE
in: Reckien , D , Salvia , M , Heidrich , O , Jon Marco , C , Piatrapertosa , F , Sonia De Gregorio-Hurtado , S , D'Alonzo , V , Foley , A , Simoes , S G S , Krkoška Lorencová , E , Orru , H , Orru , K , Wejs , A , Flacke , J , Olazabal , M , Geneletti , D , Feliu , E , Vasilie , S , Nador , C , Krook-Riekkola , A , Matosoviću , M , Fokaides , P A , Ioannou , B I , Flamos , A , Spyridaki , N-A , Balzan , M V , Fülöp , O , Paspaldzhiev , I , Grafakos , S & Dawson , R J 2018 , ' How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28 ' , Journal of Cleaner Production , vol. 191 , pp. 207-219 . https://doi.org/10.1016/j.jclepro.2018.03.220
The Paris Agreement aims to limit global mean temperature rise this century well below 2 degrees Celsius above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial proportions of greenhouse gas emissions. This paper reports the state of planning for climate change by collecting and analysing local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and analysis framework was developed that classifies local climate plans in terms of their spatial (alignment with local, national and international policy) and sectoral integration (alignment into existing local policy documents). We document local climate plans that we call type A1: non-compulsory by national law and not developed as part of international climate networks; A2: compulsory by national law and not developed as part of international networks; A3: plans developed as part of international networks. This most comprehensive analysis to date reveals that there is large diversity in the availability of local climate plans with most being available in Central and Northern European cities. Approximately 66% of EU cities have an A1, A2, or A3 mitigation plan, 26% an adaptation plan, 17% joint adaptation and mitigation plans, and about 30% lack any form of local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but mitigation does not always precede adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 70% of the cities above 1 million inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1 or A2). Countries with national climate legislation (A2), such as Denmark, France, Slovakia and the United Kingdom, are found to have nearly twice as many urban mitigation plans, and five times more likely to produce urban adaptation plans, than countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in countries where local climate plans are compulsory, especially in France and the UK. Finally, local climate plans of international climate networks (A3) are mostly found in the many countries where autonomous, i.e. A1 plans are less common. The findings reported here are of international importance as they will inform and support decision-making and thinking of stakeholders with similar experiences or developments at all levels and sectors in other regions around the world.
7
BASE
in: Risk Analysis, Volume 37, Issue 11, p. 2164-2181
8
in: Advances in Global Change Research 49
This volume details research underpinning the 'Coastal Simulator' developed by the Tyndall Centre for Climate Change Research. The Simulator provides a framework to analyze long term coastal evolution taking account of all the relevant factors. These include the uncertain future climate and other conditions, such as land use change and allows evaluation of diverse management responses. Coastal zones exemplify the environmental pressures we face: their beauty attracts settlement, they offer potential for diverse economic activities, and they are sensitive natural habitats for important species, as well as providing a range of ecosystem services. They are also extremely vulnerable to the vicissitudes of climate change, which include rising sea levels and changes in extreme events such as storms. With large populations living in coastal and estuarine cities facing the ongoing threat of inundation, coordinated management is essential, especially as coastal zones form a linked system in which piecemeal, uncoordinated management could be counterproductive. The Simulator's current detailed application to the Norfolk coast goes from global climate modelling and broad socio-economic change to the details of evolving coastal habitats, coastal erosion and coastal flood risk and their societal implications. This framework reflects the work of a multi-disciplinary team of key players who analysed these diverse factors in a coherent and integrated manner. The book offers a compelling synthesis of the lessons learned so far at national and international levels, drawing on the expertise of policy makers as well as respected figures in the field
9
Prologue -- Introduction -- Activity -- Alienation -- Attention -- Attunement -- Character -- Constitution -- Conversation -- Culture -- Equality -- Experience -- Imagination -- Integration -- Judgment -- Justice -- Language -- Listening -- Metaphor -- Method -- Movement -- Performance -- Play -- Questioning -- Reading -- Rhetoric -- Silence -- Understanding -- Voice.
10
in: Journal of Australian political economy, Issue 60, p. 73-97
ISSN: 0156-5826
11
in: Occasional papers series 12
12
in: Environmental management: an international journal for decision makers, scientists, and environmental auditors, Volume 37, Issue 4, p. 540-552
ISSN: 1432-1009
13
in: Environmental science & policy, Volume 8, Issue 2, p. 153-160
ISSN: 1462-9011
14
A large number of operating, dormant, and abandoned minesites in Canada and the U.S. were visited in 1996 to gather information on closure planning practice and to observe the performance of reclaimed landscapes. Information was compiled from mine tours and through on-site interviews with reclamation and environmental personnel. Most Canadian mines are on the closure path and have completed their first conceptual closure plan, usually in response to new government regulations. However, there is considerable uncertainty regarding several key closure issues including certification, abandonment, long-term residual liability, financial assurance, and numerous technical issues. Most mining landforms are showing good performance in terms of physical stability and revegetation. However, there is some uncertainty regarding the long-term reliability and performance of some landforms, most notably constructed rivers, end-pit lake filling, and tailings slopes. Difficulty in prediction of the long-term performance of closure landscapes has, in part, lead to a certification barrier. Very few mines have requested or achieved certification of reclaimed land, despite the fact that certification is usually the stated objective of reclamation activity. Although most mine reclamation focuses on certification, a more strategic focus is required. The ultimate objective for mine reclamation should be custodial transfer of the land (to the crown or a third party), with certification being one step on the closure path. Due to the concerns about long-term liability for reclaimed sites, a transfership barrier exists and very little reclaimed mine land has been transferred to new owners. Landscape engineering (setting goals, designing for closure, using landforms and vegetation that have sustainable and reliable long-term performance) is perhaps the next major step in mine reclamation practice. Aspects of this approach have already been adopted by several mines and research is ongoing. ; Non UBC ; Unreviewed ; Other
15
BASE