Does Urban planning affect urban growth pattern? A case study of Shenzhen, China
In: Land use policy: the international journal covering all aspects of land use, Volume 101, p. 105100
ISSN: 0264-8377
In: Land use policy: the international journal covering all aspects of land use, Volume 101, p. 105100
ISSN: 0264-8377
In: Computers, Environment and Urban Systems, Volume 86, p. 101591
In: Urban Planning, Volume 6, Issue 3, p. 306-320
The consensus nowadays is that there is a need to adapt to increasingly occurring climate impacts by means of adaptation plans. However, only a minority of European cities has an approved climate adaptation plan by now. To support stakeholder dialogue and decision-making processes in climate adaptation planning, a detailed spatial information and evidence base in terms of a climate impact assessment is needed. This article aims to compare the climate impact assessment done in the context of two regional climate change adaptation planning processes in a Dutch and a German region. To do so, a comparison of guidelines and handbooks, methodological approaches, available data, and resulting maps and products is conducted. Similarities and differences between the two approaches with a particular focus on the input and output of such analysis are identified and both processes are assessed using a set of previously defined quality criteria. Both studies apply a similar conceptualisation of climate impacts and focus strongly on issues concerning their visualisation and communication. At the same time, the methods of how climate impacts are calculated and mapped are quite different. The discussion and conclusion section highlights the need to systematically consider climatic and socio-economic changes when carrying out a climate impact assessment, to focus on a strong visualisation of results for different stakeholder groups, and to link the results to planning processes and especially funding opportunities.
Cumulative burden assessment (CuBA) has the potential to inform planning and decision-making on health disparities related to multiple environmental burdens. However, scholars have raised concerns about the social complexity to be dealt with while conducting CuBA, suggesting that it should be addressed in an adaptive, participatory and transdisciplinary (APT) approach. APT calls for deliberation among stakeholders by engaging them in a process of social learning and knowledge co-production. We propose an interactive stakeholder-based approach that facilitates a science-based stakeholder dialogue as an interface for combining different knowledge domains and engendering social learning in CuBA processes. Our approach allows participants to interact with each other using a flexible and auditable CuBA model implemented within a shared workspace. In two workshops we explored the usefulness and practicality of the approach. Results show that stakeholders were enabled to deliberate on cumulative burdens collaboratively, to learn about the technical uncertainties and social challenges associated with CuBA, and to co-produce knowledge in a realm of both technical and societal challenges. The paper identifies potential benefits relevant for responding to social complexity in the CuBA and further recommends exploration of how our approach can enable or constraint social learning and knowledge co-production in CuBA processes under various institutional, social and political contexts.
BASE
International audience ; The Paris Agreement aims to limit global mean temperature rise this century well below 2 degrees Celsius above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial proportions of greenhouse gas emissions. This paper reports the state of planning for climate change by collecting and analysing local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and analysis framework was developed that classifies local climate plans in terms of their spatial (alignment with local, national and international policy) and sectoral integration (alignment into existing local policy documents). We document local climate plans that we call type A1: non-compulsory by national law and not developed as part of international climate networks; A2: compulsory by national law and not developed as part of international networks; A3: plans developed as part of international networks. This most comprehensive analysis to date reveals that there is large diversity in the availability of local climate plans with most being available in Central and Northern European cities. Approximately 66% of EU cities have an A1, A2, or A3 mitigation plan, 26% an adaptation plan, 17% joint adaptation and mitigation plans, and about 30% lack any form of local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but mitigation does not always precede adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 70% of the cities above 1 million inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1 or A2). Countries with national climate legislation (A2), such as Denmark, France, Slovakia and the United Kingdom, are found to have nearly twice as many urban mitigation plans, and five times more likely to produce urban adaptation plans, than countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in countries where local climate plans are compulsory, especially in France and the UK. Finally, local climate plans of international climate networks (A3) are mostly found in the many countries where autonomous, i.e. A1 plans are less common. The findings reported here are of international importance as they will inform and support decision-making and thinking of stakeholders with similar experiences or developments at all levels and sectors in other regions around the world.
BASE
International audience ; The Paris Agreement aims to limit global mean temperature rise this century well below 2 degrees Celsius above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial proportions of greenhouse gas emissions. This paper reports the state of planning for climate change by collecting and analysing local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and analysis framework was developed that classifies local climate plans in terms of their spatial (alignment with local, national and international policy) and sectoral integration (alignment into existing local policy documents). We document local climate plans that we call type A1: non-compulsory by national law and not developed as part of international climate networks; A2: compulsory by national law and not developed as part of international networks; A3: plans developed as part of international networks. This most comprehensive analysis to date reveals that there is large diversity in the availability of local climate plans with most being available in Central and Northern European cities. Approximately 66% of EU cities have an A1, A2, or A3 mitigation plan, 26% an adaptation plan, 17% joint adaptation and mitigation plans, and about 30% lack any form of local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but mitigation does not always precede adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 70% of the cities above 1 million inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1 or A2). Countries with national climate legislation (A2), such as Denmark, France, Slovakia and the United Kingdom, are found to have nearly twice as many urban mitigation plans, and five times more likely to ...
BASE
The Paris Agreement aims to limit global mean temperature rise this century to well below 2 degrees C above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial greenhouse gas emissions. This paper reports the state of local planning for climate change by collecting and analysing information about local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and framework for analysis was developed that classifies local climate plans in terms of their alignment with spatial (local, national and international) and other climate related policies. Out of eight types of local climate plans identified in total we document three types of stand-alone local climate plans classified as type Al (autonomously produced plans), A2 (plans produced to comply with national regulations) or A3 (plans developed for international climate networks). There is wide variation among countries in the prevalence of local climate plans, with generally more plans developed by central and northern European cities. Approximately 66% of EU cities have a type Al, A2, or A3 mitigation plan, 26% an adaptation plan, and 17% a joint adaptation and mitigation plan, while about 33% lack any form of stand-alone local climate plan (i.e. what we classify as Al, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but planning for mitigation does not always precede planning for adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 80% of the cities with above 500,000 inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (Al). Cities in four countries with national climate legislation (A2), i.e. Denmark, France, Slovakia and the United Kingdom, are nearly twice as likely to produce local mitigation plans, and five times more likely to produce local adaptation plans, compared to cities in countries without such legislation. Al and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland: while Al and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in two countries where local climate plans are compulsory, i.e. France and the UK. Finally, local climate plans produced for international climate networks (A3) are mostly found in the many countries where autonomous (type Al) plans are less common. This is the most comprehensive analysis of local climate planning to date. The findings are of international importance as they will inform and support decision making towards climate planning and policy development at national, EU and global level being based on the most comprehensive and up-to-date knowledge of local climate planning available to date.
BASE
The Paris Agreement aims to limit global mean temperature rise this century to well below 2 °C above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial greenhouse gas emissions. This paper reports the state of local planning for climate change by collecting and analysing information about local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and framework for analysis was developed that classifies local climate plans in terms of their alignment with spatial (local, national and international) and other climate related policies. Out of eight types of local climate plans identified in total we document three types of stand-alone local climate plans classified as type A1 (autonomously produced plans), A2 (plans produced to comply with national regulations) or A3 (plans developed for international climate networks). There is wide variation among countries in the prevalence of local climate plans, with generally more plans developed by central and northern European cities. Approximately 66% of EU cities have a type A1, A2, or A3 mitigation plan, 26% an adaptation plan, and 17% a joint adaptation and mitigation plan, while about 33% lack any form of stand-alone local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but planning for mitigation does not always precede planning for adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 80% of the cities with above 500,000 inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1). Cities in four countries with national climate legislation (A2), i.e. Denmark, France, Slovakia and the United Kingdom, are nearly twice as likely to produce local mitigation plans, and five times more likely to produce local adaptation plans, compared to cities in countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in two countries where local climate plans are compulsory, i.e. France and the UK. Finally, local climate plans produced for international climate networks (A3) are mostly found in the many countries where autonomous (type A1) plans are less common. This is the most comprehensive analysis of local climate planning to date. The findings are of international importance as they will inform and support decision-making towards climate planning and policy development at national, EU and global level being based on the most comprehensive and up-to-date knowledge of local climate planning available to date. ; EU COST Action TU0902 that made the initial work possible and the positive engagement and interaction of the members of this group which led to this work. MO acknowledges funding from the Spanish Government (Grant no. FPDI-2013-16631). EKL was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415. OH and RD were funded by the EC project RAMSES Reconciling Adaptation, Mitigation and Sustainable Development for Cities (contract Ref 308497) and the EPSRC project LC Transforms: Low Carbon Transitions of Fleet Operations in Metropolitan Sites Project (EP/N010612/1).
BASE
In: Reckien , D , Salvia , M , Heidrich , O , Jon Marco , C , Piatrapertosa , F , Sonia De Gregorio-Hurtado , S , D'Alonzo , V , Foley , A , Simoes , S G S , Krkoška Lorencová , E , Orru , H , Orru , K , Wejs , A , Flacke , J , Olazabal , M , Geneletti , D , Feliu , E , Vasilie , S , Nador , C , Krook-Riekkola , A , Matosoviću , M , Fokaides , P A , Ioannou , B I , Flamos , A , Spyridaki , N-A , Balzan , M V , Fülöp , O , Paspaldzhiev , I , Grafakos , S & Dawson , R J 2018 , ' How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28 ' , Journal of Cleaner Production , vol. 191 , pp. 207-219 . https://doi.org/10.1016/j.jclepro.2018.03.220
The Paris Agreement aims to limit global mean temperature rise this century well below 2 degrees Celsius above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial proportions of greenhouse gas emissions. This paper reports the state of planning for climate change by collecting and analysing local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and analysis framework was developed that classifies local climate plans in terms of their spatial (alignment with local, national and international policy) and sectoral integration (alignment into existing local policy documents). We document local climate plans that we call type A1: non-compulsory by national law and not developed as part of international climate networks; A2: compulsory by national law and not developed as part of international networks; A3: plans developed as part of international networks. This most comprehensive analysis to date reveals that there is large diversity in the availability of local climate plans with most being available in Central and Northern European cities. Approximately 66% of EU cities have an A1, A2, or A3 mitigation plan, 26% an adaptation plan, 17% joint adaptation and mitigation plans, and about 30% lack any form of local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but mitigation does not always precede adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 70% of the cities above 1 million inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1 or A2). Countries with national climate legislation (A2), such as Denmark, France, Slovakia and the United Kingdom, are found to have nearly twice as many urban mitigation plans, and five times more likely to produce urban adaptation plans, than countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in countries where local climate plans are compulsory, especially in France and the UK. Finally, local climate plans of international climate networks (A3) are mostly found in the many countries where autonomous, i.e. A1 plans are less common. The findings reported here are of international importance as they will inform and support decision-making and thinking of stakeholders with similar experiences or developments at all levels and sectors in other regions around the world.
BASE
In: Computers, Environment and Urban Systems, Volume 65, p. 53-65
In: https://doi.org/10.7916/D83B5ZV3
Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.
BASE
In: Computers, environment and urban systems: CEUS ; an international journal, Volume 35, Issue 2, p. 93-104
ISSN: 0198-9715
In: Computers, Environment and Urban Systems, Volume 35, Issue 2, p. 93-103
In: Forschungen zur deutschen Landeskunde 251