Environmental policy narratives and urban green infrastructure: Reflections from five major cities in South Africa and the UK
In: Environmental science & policy, Volume 129, p. 96-106
ISSN: 1462-9011
In: Environmental science & policy, Volume 129, p. 96-106
ISSN: 1462-9011
In: World development: the multi-disciplinary international journal devoted to the study and promotion of world development, Volume 140, p. 105295
In: Science and public policy: journal of the Science Policy Foundation, Volume 47, Issue 4, p. 536-547
ISSN: 1471-5430
In transdisciplinary fields such as science policy, research agendas do not evolve organically from within disciplines but instead require stakeholders to engage in active co-creation. 'Big questions' exercises fulfill this need but simultaneously introduce new challenges in their subjectivity and potential bias. By applying Q methodology to an exercise in developing an international collaborative research agenda for legislative science advice (LSA), we demonstrate a technique to illustrate stakeholder perspectives. While the LSA international respondents—academics, practitioners, and policymakers—demonstrated no difference in their research priorities across advisory system roles, the analysis by developing and developed nation status revealed both common interests in institutional- and systems-level research and distinct preferences. Stakeholders in developing nations prioritized the design of advisory systems, especially in low- and middle-income countries, while those in developed countries emphasized policymaker evidence use. These differences illustrate unique regional research needs that should be met through an international agenda for LSA.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innova-tions, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent. ; Peer reviewed
BASE
In: Fazey , I , Schäpke , N , Caniglia , G , Hodgson , A , Kendrick , I , Lyon , C , Page , G , Patterson , J , Riedy , C , Strasser , T , Verveen , S , Adams , D , Goldstein , B , Klaes , M , Leicester , G , Linyard , A , McCurdy , A , Ryan , P , Sharpe , B , Silvestri , G , Abdurrahim , A Y , Abson , D , Adetunji , O S , Aldunce , P , Alvarez-Pereira , C , Amparo , J M , Amundsen , H , Anderson , L , Andersson , L , Asquith , M , Augenstein , K , Barrie , J , Bent , D , Bentz , J , Bergsten , A , Berzonsky , C , Bina , O , Blackstock , K , Boehnert , J , Bradbury , H , Brand , C , Böhme (born Sangmeister) , J , Bøjer , M M , Carmen , E , Charli-Joseph , L , Choudhury , S , Chunhachoti-ananta , S , Cockburn , J , Colvin , J , Connon , I L C , Cornforth , R , Cox , R S , Cradock-Henry , N , Cramer , L , Cremaschi , A , Dannevig , H , Day , C T , de Lima Hutchison , C , de Vrieze , A , Desai , V , Dolley , J , Duckett , D , Durrant , R A , Egermann , M , Elsner (Adams) , E , Fremantle , C , Fullwood-Thomas , J , Galafassi , D , Gobby , J , Golland , A , González-Padrón , S K , Gram-Hanssen , I , Grandin , J , Grenni , S , Lauren Gunnell , J , Gusmao , F , Hamann , M , Harding , B , Harper , G , Hesselgren , M , Hestad , D , Heykoop , C A , Holmén , J , Holstead , K , Hoolohan , C , Horcea-Milcu , A I , Horlings , L G , Howden , S M , Howell , R A , Huque , S I , Inturias Canedo , M L , Iro , C Y , Ives , C D , John , B , Joshi , R , Juarez-Bourke , S , Juma , D W , Karlsen , B C , Kliem , L , Kläy , A , Kuenkel , P , Kunze , I , Lam , D P M , Lang , D J , Larkin , A , Light , A , Luederitz , C , Luthe , T , Maguire , C , Mahecha-Groot , A M , Malcolm , J , Marshall , F , Maru , Y , McLachlan , C , Mmbando , P , Mohapatra , S , Moore , M L , Moriggi , A , Morley-Fletcher , M , Moser , S , Mueller , K M , Mukute , M , Mühlemeier , S , Naess , L O , Nieto-Romero , M , Novo , P , ÓBrien , K , O'Connell , D A , O'Donnell , K , Olsson , P , Pearson , K R , Pereira , L , Petridis , P , Peukert , D , Phear , N , Pisters , S R , Polsky , M , Pound , D , Preiser , R , Rahman , M S , Reed , M S , Revell , P , Rodriguez , I , Rogers , B C , Rohr , J , Nordbø Rosenberg , M , Ross , H , Russell , S , Ryan , M , Saha , P , Schleicher , K , Schneider , F , Scoville-Simonds , M , Searle , B , Sebhatu , S P , Sesana , E , Silverman , H , Singh , C , Sterling , E , Stewart , S J , Tàbara , J D , Taylor , D , Thornton , P , Tribaldos , T M , Tschakert , P , Uribe-Calvo , N , Waddell , S , Waddock , S , van der Merwe , L , van Mierlo , B , van Zwanenberg , P , Velarde , S J , Washbourne , C L , Waylen , K , Weiser , A , Wight , I , Williams , S , Woods , M , Wolstenholme , R , Wright , N , Wunder , S , Wyllie , A & Young , H R 2020 , ' Transforming knowledge systems for life on Earth : Visions of future systems and how to get there ' , Energy Research and Social Science , vol. 70 , 101724 . https://doi.org/10.1016/j.erss.2020.101724
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent. ; Publisher PDF ; Peer reviewed
BASE
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
BASE
In: Palgrave Communications, Volume 3
SSRN
In: International journal of sustainable development & world ecology, Volume 25, Issue 3, p. 249-261
ISSN: 1745-2627
We are increasingly confronted with severe social and economic impacts of environmental degradation all over the world. From a valuation perspective, environmental problems and conflicts originate from trade-offs between values. The urgency and importance to integrate nature's diverse values in decisions and actions stand out more than ever. Valuation, in its broad sense of 'assigning importance', is inherently part of most decisions on natural resource and land use. Scholars from different traditions -while moving from heuristic interdisciplinary debate to applied transdisciplinary science- now acknowledge the need for combining multiple disciplines and methods to represent the diverse set of values of nature. This growing group of scientists and practitioners share the ambition to explore how combinations of ecological, socio-cultural and economic valuation tools can support real-life resource and land use decision-making. The current sustainability challenges and the ineffectiveness of single-value approaches to offer relief demonstrate that continuing along a single path is no option. We advocate for the adherence of a plural valuation culture and its establishment as a common practice, by contesting and complementing ineffective and discriminatory single-value approaches. In policy and decision contexts with a willingness to improve sustainability, integrated valuation approaches can be blended in existing processes, whereas in contexts of power asymmetries or environmental conflicts, integrated valuation can promote the inclusion of diverse values through action research and support the struggle for social and environmental justice. The special issue and this editorial synthesis paper bring together lessons from pioneer case studies and research papers, synthesizing main challenges and setting out priorities for the years to come for the field of integrated valuation. ; Peer reviewed
BASE