Open Access BASE2016

Experimental and Simulation Study of Adsorption in Postcombustion Conditions Using a Microporous Biochar. 1. CO2 and N2 Adsorption

Abstract

The influence of N2 on CO2 adsorption was evaluated using a microporous biochar with a narrow pore size distribution. The adsorption isotherms of pure CO2 and N2 were measured at 0, 30, 50, and 70 °C up to 120 kPa and fitted to the Toth adsorption model. Dynamic breakthrough experiments were carried out in a fixed-bed adsorption unit using binary mixtures with compositions representative of different postcombustion streams (8–30% CO2) from ambient temperature to 70 °C. Dynamic adsorption experiments were simulated to validate the mathematical model of the adsorption process, as a necessary step for its later use for process design. The Ideal Adsorption Solution (IAS) theory, based on the pure component adsorption models, was used to account for competitive adsorption with satisfactory results. The information gathered in the present work will be used to extend the validity of the model to the adsorption of postcombustion streams containing H2O in part 2. ; Work was carried out with financial support from the HiPerCap Project of the European Union 7th Framework Programme FP7 (2007-2013; Grant Agreement number: 60855). M.G.P. acknowledges funding from the CSIC (JAE-Doc program cofinanced by the European Social Fund). N.Q. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa Program). The authors also appreciate the support from the technical consultants of AspenTechnology Inc., M.M. and E.L. ; Peer reviewed

Sprachen

Englisch

Verlag

American Chemical Society

DOI

10.1021/acs.iecr.5b04856

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.