Open Access BASE2017

The ALHAMBRA survey⋆: B-band luminosity function of quiescent and star-forming galaxies at 0.2 ≤ z < 1 by PDF analysis

Abstract

Lopez-Sanjuan, C. et. al. ; Aims. Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. Methods. We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. Results. We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2 ≤ z < 1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of M∗B ∝ Qz is QSF = -1.03±0.08 and QQ = -0.80±0.08, and of log10φ∗ ∝ Pz is PSF = -0.01±0.03 and PQ = -0.41 ± 0.05. The measured faint-end slopes are αSF = -1.29 ± 0.02 and αQ = -0.53 ± 0.04. We find a significant population of faint quiescent galaxies with MB ≳ -18, modelled by a second Schechter function with slope β = -1.31 ± 0.11. Conclusions. We present a robust methodology to compute LFs using multi-filter photometric data. The application to ALHAMBRA shows a factor 2.55 ± 0.14 decrease in the luminosity density jB of star-forming galaxies, and a factor 1.25 ± 0.16 increase in the jB of quiescent ones since z = 1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to jB increases from 3% at z = 1 to 6% at z = 0. The developed methodology will be applied to future multi-filter surveys such as J-PAS. © 2017 ESO. ; This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2015-66211-C2-1, AYA2012-30789, AYA200614056, and CSD2007-00060. We also acknowledge support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA201022111- C03-02, AYA2011-29517-C03-01, AYA2012-39620, AYA2013-40611P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA201348623- C2-2, ESP2013-48274, AYA2014-58861-C3-1, Aragon Government Research Group E103, Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, Junta de Andalucia grants TIC114, JA2828, P10FQM-6444, and Generalitat de Catalunya project SGR-1398. E. T. acknowledges the support by the ETAg grants IUT26-2, IUT40-2, and by the European Regional Development Fund (TK133). A. M. acknowledges the financial support of the Brazilian funding agency FAPESP (Post-doc fellowship - process number 2014/11806-9). B. A. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 656354. ; Peer reviewed

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.