Open Access BASE2017

Electron refraction at lateral atomic interfaces

Abstract

We present theoretical simulations of electron refraction at the lateral atomic interface between a 'homogeneous' Cu(111) surface and the >nanostructured> one-monolayer (ML) Ag/Cu(111) dislocation lattice. Calculations are performed for electron binding energies barely below the 1 ML Ag/Cu(111) M-point gap (binding energy E = 53 meV, below the Fermi level) and slightly above its Γ-point energy (E = 160 meV), both characterized by isotropic/circular constant energy surfaces. Using plane-wave-expansion and boundary-element methods, we show that electron refraction occurs at the interface, the Snell law is obeyed, and a total internal reflection occurs beyond the critical angle. Additionally, a weak negative refraction is observed for E = 53 meV electron energy at beam incidence higher than the critical angle. Such an interesting observation stems from the interface phase-matching and momentum conservation with the umklapp bands at the second Brillouin zone of the dislocation lattice. The present analysis is not restricted to our Cu-Ag/Cu model system but can be readily extended to technologically relevant interfaces with spin-polarized, highly featured, and anisotropic constant energy contours, such as those characteristic for Rashba systems and topological insulators. ; This work has been supported in part by the Spanish MINECO (Grant Nos. MAT2013–46593-C6–4-P, MAT2016–78293-C6–6-R, MAT2014-59096-P, and SEV2015-0522), the Basque Government (Grant No. IT621–13), the Catalan CERCA Program, Fundacio Privada Cellex, and AGAUR (Grant No. 2014 SGR 1400). ; Peer Reviewed

Sprachen

Englisch

Verlag

American Institute of Physics

DOI

10.1063/1.5005062

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.