Open Access BASE2021

Normal and anomalous self-healing mechanism of crystalline calcium silicate hydrates

Abstract

The origin of different stability of crystalline calcium silicate hydrates was investigated. The tobermorite crystal has been used as an analog of cement hydrate that is being mostly manufactured material on earth. Normal tobermorite is thermally unstable and transforms to amorphous at low pressure. Meanwhile, anomalous tobermorite with high Al content does not significantly transform under high pressure or high temperature. Conducted X-ray absorption spectroscopy explains the weak stability of normal tobermorite which was originally hypothesized by the role of zeolitic Ca ions in the cavities of silicate chains. Atomic simulations reproduced the experimentally observed trend of pressure behavior once the ideal structures were modified to account for the Al content as well as the chain defects. The simulations also suggested that the stability of tobermorite under stress could be rationalized as a self-healing mechanism in which the structural instabilities were accommodated by a global sliding of the CaO layer. ; J.M. acknowledges support by a grant (20SCIP-C159063-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government. H.M. acknowledges the financial support from the Gobierno Vasco (project IT912-16). The work in San Sebastián (R.D., J.S.D, A.A) was supported by the Spanish Ministry of Science and Innovation with RTI2018-098554-B-I00, PID2019-105488GB-I00 and PCI2019-103657 research grants, the Gobierno Vasco UPV/EHU (Project No. IT-1246-19), and the European Commission from the NRG-STORAGE project (GA 870114). The Institute of Engineering Research in Seoul National University provided research facilities for this work. The Ca-XAS and HPXRD experiments were performed at XAFCA beamline in Singapore Synchrotron Light Source (SSLS) and 12.2.2 beamline in Advanced Light Source (ALS), respectively. The ALS supported by a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231 and the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 1606856. ; Peer reviewed

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.