Open Access BASE2018

The THESEUS space mission concept: science case, design and expected performances

Abstract

The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above. ; THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5–1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∼10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA). ; S.E. acknowledges the financial support from contracts ASI-INAF I/009/10/0, NARO15 ASI-INAF I/037/12/0 and ASI 2015-046-R.0. R.H. acknowledges GACR grant 13-33324S. S.V. research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606176. D.S. was supported by the Czech grant 16-01116S GA ČR. Maria Giovanna Dainotti acknowledges funding from the European Union through the Marie Curie Action FP7-PEOPLE-2013-IOF, under grant agreement No. 626267 ("Cosmological Candles"). ; Peer-reviewed ; Post-print

Languages

English

Publisher

Elsevier, Committee on Space Research (COSPAR)

DOI

10.1016/j.asr.2018.03.010

Report Issue

If you have problems with the access to a found title, you can use this form to contact us. You can also use this form to write to us if you have noticed any errors in the title display.