Open Access BASE2016

Magnetic collapse and the behavior of transition metal oxides at high pressure

Abstract

We report a detail theoretical study of the electronic structure and phase stability of transition metal oxides MnO, FeO, CoO, and NiO in their paramagnetic cubic B1 structure by employing dynamical mean-field theory of correlated electrons combined with ab initio band-structure methods. Our calculations reveal that under pressure these materials exhibit a Mott insulator-metal transition (IMT) which is accompanied by a simultaneous collapse of local magnetic moments and lattice volume, implying a complex interplay between chemical bonding and electronic correlations. Moreover, our results for the transition pressure show a monotonous decrease from similar to 145 to 40 GPa, upon moving from MnO to CoO. In contrast to that, in NiO, magnetic collapse is found to occur at a remarkably higher pressure of similar to 429 GPa. We provide a unified picture of such a behavior and suggest that it is primarily a localized to itinerant moment behavior transition at the IMT that gives rise to magnetic collapse in transition metal oxides. ; Funding Agencies|Deutsche Forschungsgemeinschaft through Transregio [TRR 80]; Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST "MISIS" [K3-2016-027]; European Research Council [ERC-319286 QMAC]; Swiss National Science Foundation (NCCR MARVEL); Swedish Research Council (VR) [2015-04391]; Swedish Foundation for Strategic Research (SSF) [SRL 10-0026]; Knut and Alice Wallenberg Foundation [2014-2019]; Swedish Government Strategic Research Area Grant Swedish e-Science Research Centre (SeRC); Ministry of Education and Science of the Russian Federation [14.Y26.31.0005]

Sprachen

Englisch

Verlag

Linköpings universitet, Teoretisk Fysik; Linköpings universitet, Tekniska fakulteten; University of Augsburg, Germany; National University of Science and Technology MISIS, Russia; National University of Science and Technology MISIS, Russia; University of Paris Saclay, France; Coll France, France; University of Paris Saclay, France; Coll France, France; University of Geneva, Switzerland; National University of Science and Technology MISIS, Russia; AMER PHYSICAL SOC

DOI

10.1103/PhysRevB.94.155135

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.