Open Access BASE2022

Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions

Abstract

The experimental study of hydrogen-bonds and their symmetrization under extreme conditions is predominantly driven by diffraction methods, despite challenges of localising or probing the hydrogen subsystems directly. Until recently, H-bond symmetrization has been addressed in terms of either nuclear quantum effects, spin crossovers or direct structural transitions; often leading to contradictory interpretations when combined. Here, we present high-resolution in-situ 1H-NMR experiments in diamond anvil cells investigating a range of systems containing linear O-H ⋯ O units at pressure ranges of up to 90 GPa covering their respective H-bond symmetrization. We found pronounced minima in the pressure dependence of the NMR resonance line-widths associated with a maximum in hydrogen mobility, precursor to a localisation of hydrogen atoms. These minima, independent of the chemical environment of the O-H ⋯ O unit, can be found in a narrow range of oxygen oxygen distances between 2.44 and 2.45 Å, leading to an average critical oxygen-oxygen distance of Å. ; Funding: German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [DU 393/13-1, DU 393/9-2, STE 1105/13-1, ME 5206/3-1, DU 954/111]; Federal Ministry of Education and Research, Germany (BMBF) [05K19WC1]; Center for High Pressure Science and Technology Advance Research, Beijing, P.R. China; Swedish Research Council (VR) [2019-05600]; Alexander von Humboldt Foundation; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

Sprachen

Englisch

Verlag

Linköpings universitet, Teoretisk Fysik; Linköpings universitet, Tekniska fakulteten; Center for High Pressure Science and Technology Advance Research, Beijing, China; Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany; Center for Science at Extreme Conditions, Edinburgh Univeristy, Edinburgh, UK; Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany; London, United Kingdom

DOI

10.1038/s41467-022-30662-4

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.