Open Access BASE2021

Silver Foams with Hierarchical Porous Structures: From Manufacturing to Antibacterial Activity

Abstract

The development of porous materials with hierarchical porous structures is currently of great interest. These materials exhibit properties representative of different pore scales and thus open up the possibility of being used in new applications. In this paper, a method for the preparation of silver foams with hierarchical porous structures is discussed. Here, the replication method, which is typically used to produce coarse-pore foams, is merged with dealloying, which is commonly used to manufacture small-pore foams. For this purpose, packed NaCl particles (hard template) were infiltrated with 75%Al–25%Ag alloy (whose so-called soft template is the Al-rich phase). Both the hard and soft templates were removed by water dissolution and dealloying with HCl or NaOH solutions, respectively. Extensive characterization of the resulting materials revealed pores ranging from a few nanometers to hundreds of micrometers. The materials were characterized by their antibacterial performance against Gram-positive and Gram-negative bacteria and showed significantly higher activity than both silver foams prepared by sintering pure Ag particles and silver nanofoams produced by chemical dealloying. The combinations of pores of different sizes and the resulting high internal specific surface area have a decisive influence on the antibacterial capacity of these new materials. ; The authors acknowledge partial financial support from the Spanish Agencia Estatal de Investigación (AEI) and the European Union (FEDER funds) through grant MAT2016-77742-C2-2-P. F.C.D. also acknowledges financial support from the Generalitat Valenciana through the "Santiago Grisolía" grant (code GRISOLIA/2017/187).

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.