Open Access BASE2020

Hybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand ; Earthquake Spectra

Abstract

Ground motion simulation validation is an important and necessary task toward establishing the efficacy of physics-based ground motion simulations for seismic hazard analysis and earthquake engineering applications. This article presents a comprehensive validation of the commonly used Graves and Pitarka hybrid broadband ground motion simulation methodology with a recently developed three-dimensional (3D) Canterbury Velocity Model. This is done through simulation of 148 small magnitude earthquake events in the Canterbury, New Zealand, region in order to supplement prior validation efforts directed at several larger magnitude events. Recent empirical ground motion models are also considered to benchmark the simulation predictive capability, which is examined by partitioning the prediction residuals into the various components of ground motion variability. Biases identified in source, path, and site components suggest that improvements to the predictive capabilities of the simulation methodology can be made by using a longer high-frequency path duration model, reducing empirical V-s30-based low-frequency site amplification, and utilizing site-specific velocity models in the high-frequency simulations. ; University of Canterbury; QuakeCoRE: The NZ Centre for Earthquake Resilience, National Hazards Research Platform (NHRP); Royal Society of New Zealand's (RSNZ) Marsden Fund; Royal Society of New Zealand's (RSNZ) Rutherford Discovery Fellowship; Royal Society of New Zealand's (RSNZ) Rutherford Postdoctoral Fellowship ; Published version ; The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Financial support of this research from the University of Canterbury, QuakeCoRE: The NZ Centre for Earthquake Resilience, National Hazards Research Platform (NHRP), and the Royal Society of New Zealand's (RSNZ) Marsden Fund, Rutherford Discovery Fellowship, and Rutherford Postdoctoral Fellowship are greatly appreciated. High-performance computing resources under the NeSI merit allocation are also greatly appreciated. ; Public domain authored by a U.S. government employee

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.