Aufsatz(elektronisch)10. Mai 2019

The capacitated pollution routing problem with pickup and delivery in the last mile

In: Asia Pacific journal of marketing and logistics, Band 31, Heft 4, S. 1193-1215

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

Purpose
With the increasing awareness of global warming and the important role of last mile distribution in logistics activities, the purpose of this paper is to build an environmental and effective last mile distribution model considering fuel consumption and greenhouse gas emission, vehicle capacity and two practical delivery service options: home delivery (HD) and pickup site service (PS). This paper calls the problem as the capacitated pollution-routing problem with pickup and delivery (CPRPPD). The goal is to find an optimal route to minimize operational and environmental costs, as well as a set of optimal speeds over each arc, while respecting capacity constraints of vehicles and pickup sites.


Design/methodology/approach
To solve this problem, this research proposes a two-phase heuristic algorithm by combining a hybrid ant colony optimization (HACO) in the first stage and a multiple population genetic algorithm in the second stage. First, the HACO is presented to find the minimal route solution and reduce distribution cost based on optimizing the speed over each arc.


Findings
To verify the proposed CPRPPD model and algorithm, a real-world instance is conducted. Comparing with the scenario including HD service only, the scenario including both HD and PS option is more economical, which indicates that the CPRPPD model is more efficient. Besides, the results of speed optimization are significantly better than before.


Practical implications
The developed CPRPPD model not only minimizes delivery time and reduces the total emission cost, but also helps logistics enterprises to establish a more complete distribution system and increases customer satisfaction. The model and algorithm of this paper provide optimal support for the actual distribution activities of logistics enterprises in low-carbon environment, and also provide reference for the government to formulate energy-saving and emission reduction policies.


Originality/value
This paper provides a great space for the improvement of carbon emissions in the last mile distribution. The results show that the distribution arrangement including HD and PS services in the last mile adopting speed optimization can significantly reduce the carbon emission. Additionally, an integrated real-world instance is applied in this paper to illustrate the validity of the model and the effectiveness of this method.

Sprachen

Englisch

Verlag

Emerald

ISSN: 1758-4248

DOI

10.1108/apjml-06-2018-0217

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.