Climate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem‐scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling‐induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi‐year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long‐term, compound climatic stresses. ; Pacific Northwest National Laboratories; Swiss Federal Research Institute; Swiss Forest Lab; Swiss National Science Foundation SNF, Grant/Award Number: 31003A_159866; U.S. Geological Survey; U.S. Department of Energy Office of Science, Grant/Award Number: DESC‐0008168; Spanish Government, Grant/Award Number: CGL2015‐69773‐C2‐2‐P; Generalitat Valenciana, Grant/Award Number: BEST/2016/289; Los Alamos National Laboratory.
The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes. Combining field data from 83 sites on five continents, together with microcosm experiments, the authors show that nutrient cycling, decomposition, plant production and other ecosystem functions are positively associated with a higher diversity of a wide range of soil organisms. ; Marie Sklodowska-Curie ; We thank N. Fierer, M. Gebert, J. Henley, V. Ochoa, F. T. Maestre and B. Gozalo for their help with laboratory analyses; O. Sala, C. Siebe, C. Currier, M. A. Bowker, V. Parry, H. Lambers, P. Vitousek, V. M. Pena-Ramirez, L. Riedel, J. Larson, K. Waechter, W. Williams, S. Williams, B. Sulman, D. Buckner and B. Anacker for their help with soil sampling in Colorado, Hawaii, Iceland, New Mexico, Arizona, Mexico and Australia; the City of Boulder Open Space and Mountain Parks for allowing us to conduct these samplings; C. Cano-Diaz for her advice about R analyses; S. K. Travers for her help with mapping. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 702057. M.D.-B. is supported by the Spanish Government under a Ramon y Cajal contract RYC2018-025483-I. This research is supported by the Australian Research Council projects (DP170104634; DP190103714). S.A. and F.D.A. are funded by FONDECYT 1170995, IAI-CRN 3005, PFB-23 (from CONICYT) and P05-002 (from Millennium Scientific Initiative). N.A.C. acknowledges support from Churchill College, University of Cambridge; and M.A.W. from the Wilderness State Park, Michigan for access to sample soil and conduct ecosystem survey. B.K.S. acknowledges a research award from the Humboldt Foundation. J.-Z.H. acknowledges support from the Australia Research Council (project DP170103628); and A.G. from the Spanish Ministry (project CGL2017-88124-R). F.B. thanks the Spanish Ministry and FEDER funds for the CICYT project AGL2017-85755-R, the CSIC project 201740I008 and funds from 'Fundacion Seneca' from Murcia Province (19896/GERM/15). P.T. thanks K. Little for her help with laboratory analyses. S.C.R. was supported by the US Geological Survey Ecosystems Mission Area. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. S.N. was funded by the Austrian Science Fund (grant Y801-B16). ; Public domain authored by a U.S. government employee
Identifying the global drivers of soil priming is essential to understanding C cycling in terrestrial ecosystems. We conducted a survey of soils across 86 globally-distributed locations, spanning a wide range of climates, biotic communities, and soil conditions, and evaluated the apparent soil priming effect using C-13-glucose labeling. Here we show that the magnitude of the positive apparent priming effect (increase in CO2 release through accelerated microbial biomass turnover) was negatively associated with SOC content and microbial respiration rates. Our statistical modeling suggests that apparent priming effects tend to be negative in more mesic sites associated with higher SOC contents. In contrast, a single-input of labile C causes positive apparent priming effects in more arid locations with low SOC contents. Our results provide solid evidence that SOC content plays a critical role in regulating apparent priming effects, with important implications for the improvement of C cycling models under global change scenarios. ; European UnionEuropean Union (EU) [702057]; FEDER fundsEuropean Union (EU) [AGL2017-85755-R]; CSICConsejo Superior de Investigaciones Cientificas (CSIC) [201740I008]; I-LINK + 2018 [LINKA20069]; "Fundacion Seneca" from Murcia Province [19896/GERM/15]; Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016 under REA grant [702057]; FONDECYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [1170995]; IAI-CRN [3005]; CONICYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) [PFB-23]; Millennium Scientific Initiative [P05-002]; Churchill College (University of Cambridge); Department of Energy Terrestrial Ecosystem Sciences Program [DESC-0008168]; USGS Ecosystems Mission Area; EPA-STAR Graduate FellowshipUnited States Environmental Protection Agency [U-916251]; Merriam-Powell Center for Environmental Research Graduate Fellowship; Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship; McIntire-Stennis appropriations ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 702057. F.B., J.L., A.V., C.G., T.H. thank the Spanish Ministry and FEDER funds for the CICYT project AGL2017-85755-R, the CSIC projects 201740I008 and I-LINK + 2018 (LINKA20069), and funds from "Fundacion Seneca" from Murcia Province (19896/GERM/15). M.D-B. acknowledges support from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016 under REA grant agreement no 702057. S.A and F.D.A were supported by FONDECYT 1170995. C.A.P is grateful to IAI-CRN 3005. C.A.P and F.D.A were supported by PFB-23 (from CONICYT) and P05-002 (from Millennium Scientific Initiative) to the Institute of Ecology and Biodiversity, Chile. N.A.C is grateful to Churchill College (University of Cambridge) for financial support and to Dr. Vicki Parry for fieldwork assistance. S.R acknowledges support from the Department of Energy Terrestrial Ecosystem Sciences Program (DESC-0008168) and the USGS Ecosystems Mission Area. A.A.B. and F.S. acknowledge support from Jennifer Harden and Sebastian Doetterl for prior works and information about sites along the Merced Chronosequence and from Benjamin Sulman for help during sampling. The Arizona research sites were established with the support of an EPA-STAR Graduate Fellowship (U-916251), a Merriam-Powell Center for Environmental Research Graduate Fellowship, an Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship, and McIntire-Stennis appropriations to Northern Arizona University and the State of Arizona. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rates and trajectories of ecosystem development in structure and function across biomes. Our work provides insights into the natural history of terrestrial ecosystems. We propose that, regardless of soil age, changes in the environmental context, such as those associated with global climatic and land-use changes, will have important long-term impacts on the structure and function of terrestrial ecosystems across biomes. ; This project received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 702057 (CLIMIFUN). M.D.-B. is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), and by the BES Grant Agreement No. LRB17\1019 (MUSGONET). F.B. is grateful to the Spanish Ministry and FEDER funds for the project AGL2017–85755-R, the i-LINK+2018 (LINKA20069) from CSIC, and received funds from "Fundación Séneca" from Murcia Province (19896/GERM/15). S.R. was supported by the US Geological Survey Ecosystems Mission Area. C.P. acknowledges support from the Spanish State Plan for Scientific and Technical Research and Innovation (2013–2016), award ref. AGL201675762-R (AEI/FEDER, UE). A.G. acknowledges support from the Spanish Ministry of Science (CGL2017-88124-R). F.A. is supported by FONDECYT 11180538 and S.A. by FONDECYT 1170995. We would like to thank Peter Vitousek for his comments on a previous draft of this paper. Moreover, we thank Matt Gebert, Jessica Henley, Fernando T. Maestre, Victoria Ochoa, and Beatriz Gozalo for their help with lab analyses, and Emilio Guirado for his advice with topographic analyses. We also want to thank Osvaldo Sala, Matthew A. Bowker, Peter Vitousek, Courtney Currier, Martin Kirchmair, Victor M. Peña-Ramírez, Lynn Riedel, Julie Larson, Katy Waechter, David Buckner, and Brian Anacker for their help with soil sampling, and to the City of Boulder Open Space and Mountain Parks for allowing us to conduct these samplings. We are also grateful to the Division of Forestry and Wildlife of the State of Hawai'i and Koke'e State Park for their logistical assistance and for allowing us access to the HA sites. The Arizona research sites were established with the support of an EPA‐STAR Graduate Fellowship (U‐916251), a Merriam‐Powell Center for Environmental Research Graduate Fellowship, an Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship, and McIntire‐Stennis appropriations to Northern Arizona University and the State of Arizona. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rates and trajectories of ecosystem development in structure and function across biomes. Our work provides insights into the natural history of terrestrial ecosystems. We propose that, regardless of soil age, changes in the environmental context, such as those associated with global climatic and land-use changes, will have important long-term impacts on the structure and function of terrestrial ecosystems across biomes. ; This project received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 702057 (CLIMIFUN). M.D.-B. is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), and by the BES Grant Agreement No. LRB17\1019 (MUSGONET). F.B. is grateful to the Spanish Ministry and FEDER funds for the project AGL2017–85755-R, the i-LINK+2018 (LINKA20069) from CSIC, and received funds from "Fundación Séneca" from Murcia Province (19896/GERM/15). S.R. was supported by the US Geological Survey Ecosystems Mission Area. C.P. acknowledges support from the Spanish State Plan for Scientific and Technical Research and Innovation (2013–2016), award ref. AGL201675762-R (AEI/FEDER, UE). A.G. acknowledges support from the Spanish Ministry of Science (CGL2017-88124-R). F.A. is supported by FONDECYT 11180538 and S.A. by FONDECYT 1170995. We would like to thank Peter Vitousek for his comments on a previous draft of this paper. Moreover, we thank Matt Gebert, Jessica Henley, Fernando T. Maestre, Victoria Ochoa, and Beatriz Gozalo for their help with lab analyses, and Emilio Guirado for his advice with topographic analyses. We also want to thank Osvaldo Sala, Matthew A. Bowker, Peter Vitousek, Courtney Currier, Martin Kirchmair, Victor M. Peña-Ramírez, Lynn Riedel, Julie Larson, Katy Waechter, David Buckner, and Brian Anacker for their help with soil sampling, and to the City of Boulder Open Space and Mountain Parks for allowing us to conduct these samplings. We are also grateful to the Division of Forestry and Wildlife of the State of Hawai'i and Koke'e State Park for their logistical assistance and for allowing us access to the HA sites. The Arizona research sites were established with the support of an EPA‐STAR Graduate Fellowship (U‐916251), a Merriam‐Powell Center for Environmental Research Graduate Fellowship, an Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship, and McIntire‐Stennis appropriations to Northern Arizona University and the State of Arizona. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rates and trajectories of ecosystem development in structure and function across biomes. Our work provides insights into the natural history of terrestrial ecosystems. We propose that, regardless of soil age, changes in the environmental context, such as those associated with global climatic and land-use changes, will have important long-term impacts on the structure and function of terrestrial ecosystems across biomes. Soil age is thought to be an important driver of ecosystem development. Here, the authors perform a global survey of soil chronosequences and meta-analysis to show that, contrary to expectations, soil age is a relatively minor ecosystem driver at the biome scale once other drivers such as parent material, climate, and vegetation type are accounted for. ; European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie GrantEuropean Union (EU) [702057]; Ramon y Cajal grant from the Spanish Ministry of Science and Innovation [RYC2018-025483-I]; BES Grant [LRB17\1019]; Spanish MinistrySpanish Government; FEDER fundsEuropean Union (EU) [AGL2017-85755-R]; i-LINK+2018 from CSIC [LINKA20069]; Fundacion Seneca" from Murcia Province [19896/GERM/15]; US Geological Survey Ecosystems Mission Area; Spanish State Plan for Scientific and Technical Research and Innovation (2013-2016) [AGL201675762-R]; Spanish Ministry of ScienceSpanish Government [CGL2017-88124-R]; FONDECYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [1170995, 11180538]; EPASTAR Graduate FellowshipUnited States Environmental Protection Agency [U-916251]; Merriam-Powell Center for Environmental Research Graduate Fellowship; Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship; McIntire-Stennis appropriations to Northern Arizona University; State of Arizona ; This project received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 702057 (CLIMIFUN). M.D.-B. is supported by a Ramon y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), and by the BES Grant Agreement No. LRB17\1019 (MUSGONET). F.B. is grateful to the Spanish Ministry and FEDER funds for the project AGL2017-85755-R, the i-LINK+2018 (LINKA20069) from CSIC, and received funds from "Fundacion Seneca" from Murcia Province (19896/GERM/15). S.R. was supported by the US Geological Survey Ecosystems Mission Area. C.P. acknowledges support from the Spanish State Plan for Scientific and Technical Research and Innovation (2013-2016), award ref. AGL201675762-R (AEI/FEDER, UE). A.G. acknowledges support from the Spanish Ministry of Science (CGL2017-88124-R). F.A. is supported by FONDECYT 11180538 and S.A. by FONDECYT 1170995. We would like to thank Peter Vitousek for his comments on a previous draft of this paper. Moreover, we thank Matt Gebert, Jessica Henley, Fernando T. Maestre, Victoria Ochoa, and Beatriz Gozalo for their help with lab analyses, and Emilio Guirado for his advice with topographic analyses. We also want to thank Osvaldo Sala, Matthew A. Bowker, Peter Vitousek, Courtney Currier, Martin Kirchmair, Victor M. Pena-Ramirez, Lynn Riedel, Julie Larson, Katy Waechter, David Buckner, and Brian Anacker for their help with soil sampling, and to the City of Boulder Open Space and Mountain Parks for allowing us to conduct these samplings. We are also grateful to the Division of Forestry and Wildlife of the State of Hawai'i and Koke'e State Park for their logistical assistance and for allowing us access to the HA sites. The Arizona research sites were established with the support of an EPASTAR Graduate Fellowship (U-916251), a Merriam-Powell Center for Environmental Research Graduate Fellowship, an Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship, and McIntire-Stennis appropriations to Northern Arizona University and the State of Arizona. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia. ; European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant [702057]; US National Science FoundationNational Science Foundation (NSF) [EAR1331828, DEB 1556090] ; This project received funding from the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement 702057. N.F. was supported through grants from the US National Science Foundation (EAR1331828, DEB 1556090). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. An extended version of the acknowledgments is provided in SI Appendix. ; Public domain authored by a U.S. government employee