In early 2020, the spreading Coronavirus (COVID-19) prompted the government in the United Kingdom to introduce self-isolation and social distancing measures to reduce its transmission. By doing so, opportunities for physical activity were likely reduced, potentially causing detrimental effects to older adults. Therefore, the present study investigated the influence of the initial six weeks of lockdown on physical activity levels, perceived physical function and mood in older adults. A cross-sectional, mixed-methods, observational study was conducted using self-administered, fortnightly online surveys throughout the UK between 21st March–4th May 2020. A total of 117 participants (52 males [age: 76±4 years] and 65 females [age: 76±4 years]) completed all surveys. Highly active older adults (n=58) maintained their activity levels, while those with low (n=7)/ moderate activity (n=52) levels increased their physical activity during lockdown (ps=99.85%). Subsequently, perception of physical function was maintained across lockdown. Although, the aspect of mood; depression increased for both sexes during lockdown (ps=95.90%;>0.3 AU), there was a weak relationship between mood subscales and physical activity. Despite the maintenance/ increase in PA of our sample, depression continued to increase over the course of lockdown.
To the authors' knowledge this is the first study to describe the strength and conditioning (S&C) practices and perspectives of volleyball coaches and players. In total, 30 volleyball coaches (mean age 34.47 ± 7.83 years and coaching experience 19.57 ± 8.28 years), and 30 volleyball players (mean age 22.03 ± 4.43 years and playing experience 10.43 ± 8.98 years) completed an online survey with six sections: (a) informed consent; (b) background information; (c) education, qualifications, and prescription; (d) views on S&C; (e) exercise selection and preferences; and (f) issues and improvements. Frequency analysis was used to report responses to fixed-response questions and thematic-analysis for open-ended questions. While only one participant possessed an S&C certification, S&C was deemed 'important' to 'very important' for volleyball skills, physical fitness, and injury parameters. However, due to a reported lack of expertise, there appeared to be a theoretical understanding to practice gap. Furthermore, the implementation of S&C was considerably hindered by a lack of time, facilities, and equipment. National sports associations, coaches, and players can use the information within this study to provide an understanding of the current practices and perspectives of S&C in volleyball. While also promoting future developments in volleyball related S&C research and practice.
Green plants (Viridiplantae) include around 450,000-500,000 species(1,2) of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life. ; Alberta Ministry of Advanced Education; Alberta Innovates AITF/iCORE Strategic Chair [RES0010334]; Musea Ventures; National Key Research and Development Program of China [2016YFE0122000]; Ministry of Science and Technology of the People's Republic of ChinaMinistry of Science and Technology, China [2015BAD04B01/2015BAD04B03]; State Key Laboratory of Agricultural Genomics [2011DQ782025]; Guangdong Provincial Key Laboratory of core collection of crop genetic resources research and application [2011A091000047]; Shenzhen Municipal Government of China [CXZZ20140421112021913/JCYJ20150529150409546/JCYJ20150529150505656]; National Science FoundationNational Science Foundation (NSF) [DBI-1265383, IOS 0922742, IOS-1339156, DEB 0830009, EF-0629817, EF-1550838, DEB 0733029, DBI 1062335, 1461364]; National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [1R01DA025197]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [Qu 141/5-1, Qu 141/6-1, GR 3526/7-1, GR 3526/8-1]; Natural Sciences and Engineering Research Council of CanadaNatural Sciences and Engineering Research Council of Canada ; The 1KP initiative was funded by the Alberta Ministry of Advanced Education and Alberta Innovates AITF/iCORE Strategic Chair (RES0010334) to G.K.-S.W., Musea Ventures, The National Key Research and Development Program of China (2016YFE0122000), The Ministry of Science and Technology of the People's Republic of China (2015BAD04B01/2015BAD04B03), the State Key Laboratory of Agricultural Genomics (2011DQ782025) and the Guangdong Provincial Key Laboratory of core collection of crop genetic resources research and application (2011A091000047). Sequencing activities at BGI were also supported by the Shenzhen Municipal Government of China (CXZZ20140421112021913/JCYJ20150529150409546/JCYJ20150529150505656). Computation support was provided by the China National GeneBank (CNGB), the Texas Advanced Computing Center (TACC), WestGrid and Compute Canada; considerable support, including personnel, computational resources and data hosting, was also provided by the iPlant Collaborative (CyVerse) funded by the National Science Foundation (DBI-1265383), National Science Foundation grants IOS 0922742 (to C.W.d., P.S.S., D.E.S. and J.H.L.-M.), IOS-1339156 (to M.S.B.), DEB 0830009 (to J.H.L.-M., C.W.d., S.W.G. and D.W.S.), EF-0629817 (to S.W.G. and D.W.S.), EF-1550838 (to M.S.B.), DEB 0733029 (to T.W. and J.H.L.-M.), and DBI 1062335 and 1461364 (to T.W.), a National Institutes of Health Grant 1R01DA025197 (to T.M.K., C.W.d. and J.H.L.-M.), Deutsche Forschungsgemeinschaft grants Qu 141/5-1, Qu 141/6-1, GR 3526/7-1, GR 3526/8-1 (to M.Q. and I.G.) and a Natural Sciences and Engineering Research Council of Canada Discovery grant (to S.W.G.). We thank all national, state, provincial and regional resource management authorities, including those of province Nord and province Sud of New Caledonia, for permitting collections of material for this research. ; Public domain authored by a U.S. government employee