Open Access BASE2020

Peculiarities of the diffusion-controlled radiation defect accumulation kinetics under high fluencies

Abstract

We are grateful to A. Lushchik and E. Shablonin for numerous and valuable discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. ; Theory is developed for kinetics of the diffusion-controlled radiation defect accumulation in crystalline solids under high fluencies taking into account recently observed correlation between the defect diffusion energy and pre-exponential (known as the Meyer-Neldel rule in chemical kinetics) and their dependence on the radiation fluence (Kotomin et al., J Phys Chem A 122 (2018) 28). The predicted accumulation kinetics could be applied to all kinds of solids. It considerably differs from the commonly used, in particular, suggesting that concentration growth at high fluencies could be nonmonotonous and the saturation defect concentrations independent on the temperature. ; EUROfusion Consortium Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.